

In <u>science</u>, an inverse-square law states that a specified physical <u>quantity</u> is <u>inversely proportional</u> to the <u>square</u> of the <u>distance</u> from the source of that physical quantity.

7

Inverse Square Law - Divergence

Inverse Square Law - Divergence

Inverse Square Law - Divergence

Inverse Square Law Formula

- I_1 = Known Intensity
- I_2 = Unknown Intensity
- D_1 = Known Distance
- D_2 = Unknown Intensity

Inverse Square Law – Sample Problems

If the exposure rate is 139 mR/h at D_2 then what are they at D_1 , D_3 , and D_4 ?

Inverse Square Law Formula

RADIA

Inverse Square Law Formula

RADIATION

$$I_2 = 556 \, \text{mR/h}$$

15

Inverse Square Law – Sample Problems

If the exposure rate is 139 mR/h at D_2 then what are they at D_1 , D_3 , and D_4 ?

Inverse Square Law – Sample Problems

If the exposure rate is 139 mR/h at D_2 then what are they at D_1 , D_3 , and D_4 ?

	Check Source: 10 mCi Cs-137		
	Distance (in)	Measured Counts	Calculated
	3	4357	
	6	1140	-
Reference	9	474	
	12	258	
	15	187	
	18	157	-
	21	118	-
	24	83	-
	Background	42	
			1

	Check Source: 10 mCi Cs-137			
	Distance (in)	Measured Counts	Calculated	
	3	4357	4266	
	6	1140	1067	
Reference	9	474	474	
	12	258	267	
	15	187	171	
	18	157	119	
	21	118	87	
	24	83	67	
	Background	42		

Inverse Square Law Experiment

22

This completes this section. Proceed to the next one when you are ready.

RADIATION SOLUTIONS