

Scientific Notation for Radiation Measurement Units

Unit Modifiers

Multiple of 10	Numerical Value	Prefix	Symbol
10 ¹²	1,000,000,000,000	tera	T
10 ⁹	1,000,000,000	giga	G
10 ⁶	1,000,000	mega	M
10 ³	1,000	kilo	К
10 ²	100		
10 ¹	10		
10 ⁰	1		
10-1	.1	deci	D
10 ⁻²	.01	centi	С
10-3	.001	milli	m
10 ⁻⁶	.000001	micro	μ
10-9	.00000001	nano	n
10-12	.00000000001	pico	р
10 ⁻¹⁵	.000000000000001	femto	f

Common Modifiers Used in Radiation Measurement

R: Roentgen base unit for radiation exposure

mR: milli-Roentgen (one thousandth of a Roentgen)

μR/h: micro Roentgen per hour (one millionth of a Roentgen)

mR/h: milli-Roentgen per hour (exposure rate)

Rem: Rem base unit for radiation dose

mRem: milli-Rem (one thousandth of a Rem)
mRem/h: milli-Rem per hour (dose rate)

Sv: Sievert base unit for radiation dose

mSv: milli-Sievert (one thousandth of a Sievert)

mSv/h: milli-Sievert per hour (dose rate)

Ci: Curie base unit for radiation activity (radioactivity)

pCi: pico-curie (one trillionth of a curie)

nCi: nano-curie (one billionth of a curie)

μCi: micro-curie (one millionth of a curie)

mCi: milli-curie (one thousandth of a curie)

Scientific Notation Review

SCIENTIFIC NOTATION USES BASE 10

or

10¹

EXPONENT

EXPONENT

or

 $10^2 (= 10 \times 10 = 100)$

Exponential Form

POSITIVE NUMBERS

- $10 = 10^1$ (one zero in 10)
- 100 = 10² (two zeroes in one-hundred)
- 1,000 = 10³ (three zeroes in one-thousand)
- 10,000 = 10⁴ (four zeroes in ten-thousand)
- 100,000 = 10⁵ (five zeroes in one-hundred-thousand)

NEGATIVE NUMBERS

- $.1-10^{-1}$ (decimal one place to the left)
- .01 = 10⁻² (decimal two places to the left)
- $.001 = 10^{-3}$ (decimal three places to the left)

Scientific Notation - Multiplication

$$100 X 1,000 = 100,000$$

or

$$10^2 \ X \ 10^3 = 10^5$$

$$X^a \cdot X^b = Z^{(a+b)}$$

(using the convention that A • A represents multiplication)

Scientific Notation- Division

$$X^a / X^b = Z^{(a-b)}$$

$$10^3 / 10^2 =$$

$$10^{(3-2)} = 10^1$$

Scientific Notation Mixed Numbers

Positive Exponents

1,200

1.2 X 1000

 1.2×10^3

56,000

5.6 X 10000

 5.6×10^4

1,800,000

1.8 X 1,000,000

 1.8×10^{6}

Negative Exponents

0.034

move decimal two places to the right

3.4 X 10⁻²

0.00056

move decimal four places to the right

5.6 X 10⁻⁴

0.000012

move decimal six places to the right

1.2 X 10⁻⁶

Scientific Notation Mixed Numbers

1200.0 X 0.034

Example Problem

$$= 1.2 \times 10^3 \times 3.4 \times 10^{-2}$$

1. Convert to scientific notation

 $= 1.2 \times 3.4 \times (10^3 \times 10^{-2})$

2. Multiple the coefficient numbers then add the exponents

 $= 4.08 \times 10^{1}$

3. Write out result of multiplying the coefficient numbers and apply the derived exponent to the base 10

= 40.8

1. Convert back to real number

Scientific notation is a great way to work radiation unit problems covering a very wide numerical span.

This completes this section.

Proceed to the next one when you are ready.

